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1 Abstract

For computationally limited agents such as humans, per-
fectly rational decision-making is almost always out of
reach. Instead, people may rely on computationally frugal
heuristics that usually yield good outcomes. Although
previous research has identified many such heuristics, dis-
covering good heuristics and predicting when they will
be used remains challenging. Here, we present a machine
learning method that identifies the best heuristics to use
in any given situation. To demonstrate the generalizabil-
ity and accuracy of our method, we compare the strategies
it discovers against those used by people across a wide
range of multi-alternative risky choice environments in a
behavioral experiment that is an order of magnitude larger
than any previous experiments of its type. Our method
rediscovered known heuristics, identifying them as ratio-
nal strategies for specific environments, and discovered
novel heuristics that had been previously overlooked. Our
results show that people adapt their decision strategies
to the structure of the environment and generally make
good use of their limited cognitive resources, although
they tend to collect too little information and their strat-
egy choices do not always fully exploit the structure of
the environment.

2 Introduction

We make thousands of decisions every day. Collectively, these
decisions determine our personal lives and the success of com-
panies and organizations, and they also shape the economy
and society as a whole. However, making good decisions is
a challenging computational problem for people and artifi-
cial intelligences alike (1–6). According to classic economic
theory, people should choose their actions so as to maximize
the expected value of the consequences (7, 8), but computing
those expected values for real world problems is a substantial
task and humans face significant limitations in computational
resources and time (9). As a result, most real-world decisions
are too complex for people to apply those economic principles
correctly. Instead, people have to rely on heuristics to simplify
decision-making (10–14).

Despite the ubiquity of heuristics (and resulting biases)

in decision-making, identifying which heuristics people use
and when they use them can be a challenge. Psychologists
identify heuristics by thinking about the structure of decision
environments and observing human behavior, but this pro-
cess of discovery is slow and requires both luck and ingenuity.
This makes discovering good heuristics a critical bottleneck to
understanding and improving human decision-making. Fur-
thermore, while many specific heuristics have been identified,
there is no general method that could be used to predict which
heuristics will be used in novel situations.

In this article, we address these problems by proposing a
framework that can be used to automatically derive optimal
heuristics. This approach relies on the idea that people’s
heuristics may arise as a rational adaptation to the structure
of the environment and the cognitive constraints of limited
time and computational resources (9, 15–21) – a normative
benchmark that we refer to as “resource rationality” (16, 21).
Resource rationality is achieved through an optimal trade-
o� between decision quality and computational cost. This
trade-o� also arises in machines, and can be formalized using
ideas from the artificial intelligence literature (22). Specifi-
cally, heuristic decision-making can itself be understood as a
sequential decision problem (23). At each step, people make
a decision about whether to collect more information about
their options through deliberation, or simply to stop thinking
and act. Whereas classic rationality applies to the utility of
decisions in the external world, and research on heuristics and
biases highlights internal cognitive limitations, the framework
we propose here bridges these two approaches by viewing ratio-
nality as a property of this internal sequential decision process,
rather than of the resulting external decisions. We leverage
recent advances in machine learning to solve this sequential
decision problem, allowing us to automatically derive optimal
heuristics for any decision environment.

To demonstrate the accuracy and generalizability of our
method, we applied it to multi-alternative, multi-attribute
decision-making (24). The heuristics people use to make
these kinds of decisions have been extensively studied in the
Mouselab paradigm for multi-alternative risky choice, where
participants choose between multiple gambles whose payo�s
depend on a random outcome (see Figure 1) (25). Participants
are shown the probability of each outcome and a payo� matrix
with one column for each gamble and one row for each outcome.
The entry in column g and row o indicates how much money
gamble g pays if outcome o occurs. Critically, all payo�s
are initially occluded, and the player can reveal outcomes by
clicking on them one-by-one. Thus, the sequence of clicks a
player makes traces their decision strategy. To operationalize
the cost of gathering information participants are charged a
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fixed fee for every click; thus, to maximize earnings, the player
must employ a decision strategy that achieves an optimal
trade-o� between the cost of information gathering versus the
value of information.

Previous work has manually identified a number of heuris-
tics employed in multi-alternative risky choice (26–29), and
characterized the environments in which hand-chosen heuris-
tics perform best, showing that people select among those
heuristics accordingly (27, 30–37). More recent work has
sought to automate the characterization of known heuristics
using a neural network algorithm (38). It still remains un-
known, however, whether other e�ective heuristics remain
undiscovered, and whether known heuristics correspond to
a normative standard. Our method extends these previous
results by discovering the best-performing heuristics from an
immense, combinatorial strategy space defined by a set of
basic cognitive operations. Applying reinforcement learning to
arbitrary discrete steps of cognitive operations provides a for-
malism that can be applied to any setting where the goal is to
characterize the optimality of heuristics, while circumventing
the need to search a huge combinatorial space. This formalism
also o�ers a normative standard for evaluating heuristics.

To automatically search for potentially undiscovered heuris-
tics, we recently developed a reinforcement learning algorithm
that approximates the value of information by interpolating
between the myopic value of information and the value of per-
fect information (39). We applied this method across a very
large range of scenarios and tested its predictions in an exper-
iment of unprecedented scale, a full order of magnitude larger
than the largest previous study in this setting. We collected
data from over 2,300 participants, systematically varying the
parameters of the decision-making environment. This allowed
us to explore a large space of potential heuristics that may
be employed in the Mouselab task. It further allowed us to
parametrically evaluate human heuristics using the norma-
tive standard of resource-rationality. If human heuristics are
selected in accordance with this normative standard, people
should adapt their strategies to the decision environment.

Our method automatically rediscovered the classic Take-
The-Best (TTB) and Weighted-Additive (WADD) heuristics
(11) as resource-rational strategies in specific situations. In
addition, our method discovered novel heuristics that had been
previously overlooked. Importantly, our approach correctly
predicted which strategies people use and under which envi-
ronmental conditions they use them more versus less often.
Comparing people’s strategy choices against the normative
standard of resource rationality indicated that people use
resource-rational decision-making strategies, and adaptively
select which strategy to use based on the structure of the
environment. However, they select these strategies imperfectly
and generally gather too little information, thus falling short
of perfect resource-rational decision-making. These findings
suggest that our automatic strategy discovery method is a
promising approach for uncovering people’s cognitive strate-
gies and assessing human rationality using a more realistic
normative standard.

Automatic strategy discovery

Our approach rests on the key insight that the process of mak-
ing a decision can itself be described as a sequential decision
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Fig. 1. Illustration of the Mouselab paradigm. The task is to choose one of six
gambles, each of which results in one of four probabilistic outcomes; before gambling,
participants can gather information about the value of each cell by clicking on it. The
Mouselab paradigm externalizes computations by clicks, belief states by revealed
information, and the cost of each computation by the fee charged for the corresponding
click. This example shows a sequence of clicks generated by the Satisficing-Take-
The-Best strategy, which was discovered through our approach.

problem. At each step of this problem, the agent chooses
whether to perform some computation or to instead take the
results of previous computations and act. Stated in these
terms, the problem of making a decision can be recognized
as a Markov Decision Process (MDP). A decision-making
strategy (a heuristic) is then a policy for that MDP, that is,
a function that selects which computation to execute next
given the results of previous computations. In the artificial
intelligence literature, this problem of choosing a sequence of
computations to perform has been formalized as a “meta-level”
MDP (40), where the name acknowledges that we are deciding
how to decide.

The definition of a meta-level MDP parallels that of a
conventional, or “object-level” (41), MDP. In an object-level
MDP, the environment is represented using states that the
agent can occupy, and actions that the agent can execute,
which lead to rewards and transitions to new states. The
agent’s objective is to select actions that maximize cumulative
reward (42). The reinforcement learning paradigm relies on
the MDP framework as a formal representation of the external
environment and has led to considerable recent advances in
artificial intelligence (e.g., (43–46)) and success in describing
human (e.g., (47, 48)) and animal (e.g., (49, 50)) behavior and
brain function (e.g., (51–56)).

A meta-level MDP uses the same formal framework, but
instead of capturing the external environment in which deci-
sions take place it represents the internal environment of the
cognitive processes that underlie those decisions. As shown
in Figure 2, internal states are referred to as beliefs, b, and
internal actions are described as computations, c, that can be
used to update beliefs. Because brains and machines have
limited computational resources, computations come with a
cost, rmeta. In addition to making internal computations, an
agent can execute a special internal action, ‹, that terminates
deliberation and takes the action in the external world with
the highest expected value according to their current beliefs.
The agent then receives a reward from the external world (blue
nodes in Figure 2). Methods from reinforcement learning that
are used to solve MDPs can be built upon to solve meta-level
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Fig. 2. Schematic illustration of the meta-level Markov Decision Process framework applied to the Mouselab task. At the beginning of each trial, when all cell values are hidden,
the agent’s initial belief state, b0, is represented as Gaussian distribution for each of the six options. Each time the agent makes a computation, c, by clicking on a cell to gather
information, it incurs a computational cost, rmeta, and updates its belief distribution for the observed column. When the agent is finished gathering information, it can choose to
terminate deliberation, ‹, by selecting a gamble, at which point an action is taken in the external world and it receives a reward (blue nodes).

MDPs, thus providing a formal framework describing how a
decision-maker ought to navigate the internal world of their
mind. In this way, a meta-level MDP can be used to derive
cognitive strategies for decision-making.

The meta-level MDP has its origins in the artificial intelli-
gence literature on rational metareasoning (22, 40), which is
concerned with building machines that best use their limited
computational resources. Recently, however, the approach has
been applied to understand how humans e�ciently use their
cognitive resources. In particular, meta-level MDPs have been
used to build resource-rational models of simple (non multi-
attribute) decision-making (57) as well as planning (58, 59).
Here, we apply this approach to compute resource-rational
heuristics for multi-attribute risky choice and compare them
to the strategies that people use.

Solving complex meta-level MDPs is a challenging compu-
tational problem whose complexity exceeds the capacities of
standard methods from reinforcement learning and dynamic
programming. To overcome this challenge, we recently devel-
oped a new reinforcement learning algorithm that is specifically
tailored to solving meta-level MDPs called Bayesian meta-
level policy search (BMPS) (39). Here, we use this technical
advance to discover rational heuristics for risky choice. The
resulting approach is as follows: First, we model the distribu-
tion of decision problems posed by the environment and the
cognitive capacities the decision-maker has available to solve
those problems as a meta-level MDP. Next, we apply BMPS
to solve the meta-level MDP. Finally, we characterize this
solution in terms of discrete decision strategies by applying a
clustering algorithm to the cognitive operations it performs to
make its decisions.

Results
We set out to discover resource-rational heuristics by applying
our computational strategy discovery method to the Mouselab
task, and then clustering on the sequences of clicks generated
by our method. We then compared those clusters of click
sequences to those produced by human participants. To further
assess the theoretical predictions of our method, we next
examined how these strategies depend on the structure of the
environment. We looked at how the resource-rational method

adapts heuristic use to the statistics of the environment, and
then compared this to how people’s heuristics depend on
the environment. Finally, we tested additional theoretical
predictions about the variability of people’s choice behavior
and quantified how our participants’ choice behavior deviated
from resource-rational decision-making.

We designed a large-scale process-tracing experiment using
the Mouselab task, with 6 options (or “alternatives”) and 4
possible outcomes (“attributes”) (Figure 1). To test how well
human decision strategies correspond to the optimal heuristics
derived by our method, we collected data across a wide variety
of decision environments that varied across three parameters:
1) the “stakes” of the decision (the variance of possible payo�s),
2) the “dispersion” of the outcome distribution (lower values
resulting in more similar probabilities for each outcome), and 3)
the “cost” of computation (the number of points subtracted for
each click). We considered two levels of stakes and five levels
for dispersion and cost, resulting in a total of fifty conditions
(see Materials and Methods for details). For each condition,
we applied our strategy discovery method by formulating a
corresponding meta-level MDP and finding an approximately
optimal solution using the BMPS algorithm (see Materials
and Methods). We then presented 2,368 human participants
with the same fifty conditions in a between-subjects design
with about 47 participants per condition.

Identification of resource-rational decision
strategies
Previous work has identified a set of well-known heuristics that
people use in multi-alternative risky choice, including Take-the-
Best (TTB, defined as choosing between alternative options
based on the one single attribute that is the best predictor of
the outcome� (28)) and Satisficing (SAT, defined as considering
alternative options until it finds one that is good enough (29)),
and other strategies, including Weighted Additive (WADD,
which computes the expected payo�s of all alternatives (11,
29, 60)). It remains unknown, however, whether additional
heuristics exist. Here we set out to discover new heuristics by
exploring the full space of potential heuristics encompassed by

� If there is a tie, then TTB considers the second most predictive attribute (and so on) but this
scenario virtually never occurs in our paradigm because there are about 1000 possible payoffs.
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Fig. 3. Data-driven strategy identification. (A) The sequence of clicks on a given trial is converted into an indicator matrix with uninformative spatial variation removed. Rows
are rearranged from the most to least probable outcome, and columns are rearranged in descending order of the sum of the probabilities of the outcomes observed in that
column. This matrix is then flattened into a 24-dimensional vector. All 47, 360 such vectors from our behavioral experiment (2,368 participants ◊20 trials per participant;
visualized here projected onto 2D space via Fisher’s Linear Discriminant Analysis) serve as input to a k-means clustering algorithm. (B) Centroids for the clusters uncovered in
human data and model simulations. The first two clusters correspond to previously identified strategies: Take-The-Best (TTB) and Weighted Additive (WADD), respectively. The
third and fourth clusters correspond to the newly discovered strategies: Satisficing-TTB (SAT-TTB) and SAT-TTB+. A fifth cluster corresponding to gambling randomly (without
gathering information) was also revealed in the human data.

all fifty decision environments. To explore this space in a data-
driven way, we applied the k-means clustering algorithm to the
sequences of clicks performed by our resource-rational model
and by human participants. k-means clustering partitions the
click sequences into k discrete clusters of similar sequences,
with the centroid of each cluster showing the prototype click
sequence for that cluster. These prototypes highlight distinct
types of heuristics deployed in the Mouselab task.

Inspecting the heuristic prototypes from the resource-
rational model revealed that our method rediscovered the
TTB heuristic (11) and the WADD strategy. The sequences of
clicks in each of these two clusters correspond closely to each of
these two well known heuristics. Two additional prototypes re-
vealed two previously undiscovered heuristics. The first, which
we call SAT-TTB, combines elements of TTB and Satisficing
(see Figure 1). Like TTB, SAT-TTB inspects only the payo�s
for the most probable outcome. But unlike TTB and like
Satisficing, SAT-TTB terminates as soon as it finds a gamble
whose payo� for the most probable outcome is high enough,
reducing the amount of information considered. The second
newly discovered heuristic, SAT-TTB+, starts by inspecting
some or all of the payo�s for the most probable outcome (as
in SAT-TTB), and then inspects additional payo�s for the
second-most probable outcome from one or more of the most
promising gambles (examples of this strategy are shown in the
sequence of clicks illustrated in Figure 2 and in Figure 3A).

Figure 3A illustrates the procedure used to transform click
sequences into a 24-dimensional binary vector with invariant
ordering of rows and columns, which comprised the inputs
to k-means clustering. Figure 3B shows a 2-dimensional em-
bedding of these vectors from every trial, highlighting which
k-means cluster each vector belongs to. Figure 3C shows
the centroids identified by applying k-means clustering to
resource-rational click sequences (top) and human click se-
quences (bottom), revealing a close correspondence between
the strategies deployed by the resource-rational model and
participants’ strategies. Centroid 1 corresponds to the TTB
strategy, where participants inspect only the most probable
attribute for each alternative option. Centroid 2 corresponds
to the WADD strategy, which clicks practically everywhere,
hence the nearly all-yellow color. Centroids 3 and 4 corre-
spond to the two newly discovered strategies: SAT-TTB and
SAT-TTB+. While the resource-rational model never gam-
bles randomly, participants do occasionally gamble without
gathering any information; this is captured in centroid 5. The
two newly discovered heuristics do not correspond to any pre-
viously known heuristics. Yet, as described below, we found
that people frequently use these heuristics across the wide
range of environments in which they are adaptive.
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Fig. 4. Strategy use frequencies of the resource-rational model and human participants as a function of the three environment parameters: ‡, the standard deviation of possible
payoffs, –≠1, the peakiness of the outcome distribution, and lambda, the cost paid for each piece of information revealed.

Comparison of strategies across environments
The clustering results indicate that people use the same types
of heuristics as the resource-rational model. To determine
whether people deploy these heuristics rationally, we inspected
how the frequency with which people use each strategy depends
on the structure of the environment. Consistent with our main
predictions, we found that participants adapt their strategies
to the environment in much the same way as the resource-
rational model (see Figure 4).†

Our resource-rational model predicted that as the stakes in-
crease participants should rely less on the most frugal strategy—
SAT-TTB—and more on SAT-TTB+, which gathers addi-
tional information. The data confirmed both predictions; that
is, regressing the frequencies with which participants used
each strategy on the environmental parameters in a logistic
mixed-e�ects regression with random intercepts revealed that
the stakes had a significant negative e�ect on the frequency of
SAT-TTB (unstandardized slope — = ≠0.0061, p < 0.001) and
a significant positive e�ect on the frequency of SAT-TTB+
(— = 0.0035, p < 0.001; left panels of Figure 4).

The model predicted that as the outcome distribution be-
comes more peaky (i.e., higher dispersion), the use of TTB
should steadily increase; intuitively, one can focus on a sin-
gle outcome when only one is likely to occur. Our partici-
pants confirmed this prediction (— = 0.20, p < 0.001; middle
column of Figure 4). However, while the resource-rational
model most-often uses SAT-TTB+ in low-dispersion envi-
ronments, participants often resorted to choosing randomly
instead (— = ≠0.26, p < 0.001).

†To facilitate the comparison between the model predictions and participant behavior, Figure 4 is
conditioned on the four strategies shown, that is, not including undefined patterns of clicking or
random gambles.

When there is no cost for gathering information, the
model usually uses WADD, very rarely using this strategy
otherwise.‡ Although participants also limited their use
of WADD to this case, they were more likely to use SAT-
TTB+. As the cost increases from 1 to 8, the resource-
rational model and participants show the same pattern for
the remaining three strategies: decreasing the use of both
SAT-TTB+ (— = ≠0.11, p < 0.001, respectively) and TTB
(— = ≠0.051, p < 0.001), while increasing use of the most frugal
strategy, SAT-TTB (— = 0.26, p < 0.001). Figures S1 and S2
compare strategy frequencies in each of the 50 conditions,
showing broad correspondence between the resource-rational
model and participants.

Table S1 summarizes post-hoc pairwise comparisons and
e�ect sizes for the statistics reported in this section.

Rational strategy selection explains variability
in choice behavior
Previous research on multi-alternative risky choice has char-
acterized people’s choice behavior in the Mouselab paradigm
in terms of four features (25, 61, 62). The first feature is the
total amount of information processed, the second measures
the relative frequency of attribute- versus alternative-based
information processing, and the third and fourth features mea-
sure the variance in information gathering across alternatives
and attributes, respectively. Our resource-rational model pre-
dicts how these behavioral characteristics should vary between
di�erent decision environments. To test these predictions,
we assessed the contingency of these qualitative aspects of

‡The resource-rational model does not always use WADD when the cost is zero because in some
scenarios the expected value of information is less than floating point precision.
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Fig. 5. Behavioral correspondence between participants and the resource-rational model. (A) The average number of values revealed by participants and the model as a
function of each environment parameter. (B) The same, but for a measure of alternative- vs. attribute-based processing (negative indicates attribute-based). Error-bars show
the SEM across participants.

people’s decision-making style on the structure of the decision
problem.

We first considered total amount of information gathered
(i.e., the number of clicks made). As illustrated in Figure 5A,
participants adapted the amount of information gathered
to the environmental structure in much the same way as
the model, but they consistently gathered too little infor-
mation. When the stakes increase, the potential for large
gains and large losses goes up, and this merits more infor-
mation gathering. Indeed, participants gathered more infor-
mation as the stakes increased (a linear mixed-e�ects regres-
sion with random intercepts for participants revealed that
the stakes significantly predicted information gathered: stan-
dardized — = 0.0013, p = 0.009). When the dispersion of
outcome probabilities increases, people should gather less
information, since fewer outcomes (and thus cells) are rel-
evant to each gamble’s value; participants trended in this
direction (— = ≠0.008, p = 0.098). Finally, people reduced
information gathering as it became more costly to do so
(— = ≠0.13, p < 0.001). However, across all conditions, partic-
ipants made on average 3.80 fewer clicks than the resource-
rational model. We explore possible explanations for this
discrepancy below.

We next looked at a behavioral feature that character-
izes the sequences of information gathering. Specifically,
we computed a metric that measures the relative frequency
of alternative-based vs. attribute-based processing. In
attribute-based processing, sequential clicks are made on
one row/outcome (as in TTB and SAT-TTB); this corre-
sponds to comparing several options along one dimension. In
alternative-based processing, sequential clicks are made on
one column/gamble; this corresponds to evaluating one option
based on multiple features. We can measure the relative fre-
quency of alternative-based versus attribute-based processing
in a given trial as the number of sequential transitions between
alternative-based clicks minus the number of sequential transi-

tions between attribute-based clicks, divided by the sum of the
two terms (25, 61). This yields a number between ≠1 and +1,
with positive values indicating alternative-based processing,
and negative numbers indicating attribute-based processing.
Figure 5B shows that both the model and participants rely
more on attribute-based processing overall, but with the model
favoring this type of processing more heavily than people. Fur-
thermore, participants adapted their processing pattern to the
environment in all of the ways predicted by the model: they
used more alternative-based processing as the stakes increased
(— = 0.001, p = 0.016); they used more attribute-based pro-
cessing as dispersion increased (— = ≠0.043, p < 0.001) and
the cost increased (— = ≠0.047, p < 0.001). A comparison
of information gathering and alternative- vs. attribute-based
processing for the model and participants across each of the
fifty decision environments in shown in Figure S9, showing an
overall qualitative correspondence.

Two additional informative behavioral markers are the vari-
ance in the amount of information gathered across outcomes
and across gambles. Attribute variance is defined as the vari-
ance of the proportion of clicks made on each row/outcome,
being zero if clicks are evenly divided across outcomes. High
attribute variance is a signature of “non-compensatory” strate-
gies that focus attention on a subset of attributes (because the
less important attributes cannot “compensate” for the more
important ones) (25, 61). Alternative variance is defined in
the same way, but for columns. High alternative variance is a
signature of strategies that either gather more information for
high-value gambles (as in SAT-TTB+) or stop searching once
a high-value gamble is found (as in SAT-TTB). Figure S10
shows qualitative correspondence between participants and
the resource-rational model for both of these measures. As
the stakes increase, both the resource-rational model and the
participants spread their clicks more uniformly both across
attributes (attribute variance; — = ≠0.002, p < 0.001) and
alternatives (alternative variance; — = ≠0.0012, p = 0.0016),
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likely due to an overall increase in information gathering.
When one outcome was much more likely than all others then
people tended to compare many alternatives on that single
outcome without considering any other outcomes. As pre-
dicted, increasing the di�erences between the probabilities
of di�erent outcomes (higher dispersion) therefore made peo-
ple distribute their attention less evenly across the di�erent
attributes (— = 0.041, p < 0.001) and more evenly across the al-
ternatives (— = ≠0.018, p < 0.001). Finally, increasing the cost
of information made people more discerning in how much at-
tention they paid to di�erent attributes (— = 0.096, p < 0.001)
and di�erent alternatives (— = 0.095, p < 0.001). Figure S11
shows the qualitative correspondence between the model and
participants for these two measures across all fifty decision
environments.

Sources of under-performance
In addition to providing a framework for discovering heuristics,
our formalism provides a normative standard to compare with
participants’ performance. On average, participants achieved
57.1% as many points as the resource-rational agent (see
Figure S12 for a comparison across conditions). What explains
this sizable gap? As detailed in the SI and summarized in
Table S3, we identified four possible causes of participant
under-performance: implicit costs, imperfect information use,
imperfect strategy selection, and imperfect strategy execution.
We briefly summarize these results below.

First, participants may be influenced by costs not ac-
counted for by our resource-rational model, which could ex-
plain why participants collected less information than the
resource-rational agent. These costs could include, for exam-
ple, physical constraints like the e�ort required to move a
cursor and make clicks, as well as cognitive costs associated
with processing the revealed information (25). As a first step
towards quantifying the extent to which such costs hindered
our participants’ performance, we simulated the model with
an implicit cost-per-click set to match the average amount of
information people gathered. This model had a 9.0% reduction
in performance, which accounts for 23.0% of the performance
gap between participants and the model. Importantly, this
number approximates the proportion of the performance gap
attributable to implicit costs under the assumption that people
act optimally with respects to those costs; it is also possible
that people simply gather less information than they should.
Furthermore, a simple cost-per-click is only a rough approxi-
mation of the true information processing costs (which likely
vary depending on which information was acquired). Better
characterizing the computational costs involved in risky choice,
and dissociating implicit costs from suboptimal information
gathering, is an important direction for future research.

A second source of under-performance is imperfect use of
gathered information. That is, given the information revealed,
participants may simply fail to select the gamble with the
highest expected value. This shortcoming can be accounted
for by the e�ort required to compute such values in this task.
However, this source accounted for only 6.8% of participants’
reduced performance.

A third possible source of suboptimality is imperfect strat-
egy selection. At an aggregate level, people use the same
heuristics as the model in roughly correct proportion for each
environment. However, on a trial-by-trial basis, they may not

always choose the most e�ective heuristic. Indeed, we find
that imperfect strategy selection accounts for 63.0% of the
performance di�erential between participants and the model.
The majority of this gap (59.0%, or 37.2% of the total per-
formance gap) is attributed to trials in which participants
gamble randomly when they should have considered some
information.§

Finally, even when participants choose the same strategy
as the model, they may not execute it perfectly. For example,
they may set an incorrect satisficing threshold in SAT-TTB,
or they may consider too many or too few additional features
in SAT-TTB+. Such imperfect strategy execution accounts
for the remaining 7.2% of under-performance. Nearly all of
this gap is attributed to imperfect execution of the SAT-TTB+
strategy, which is the most complex strategy to execute.

Discussion

Traditionally, rational models and the heuristics and biases
approach have o�ered very di�erent views of human decision-
making. As a result, researchers studying human decision-
making have typically had to make a choice between assuming
people are rational or characterizing their behavior as the
result of following heuristics that result in systematic biases.
Each approach has advantages and disadvantages. Assuming
rationality makes it easy to generate predictions across a wide
range of circumstances, but people sometimes systematically
deviate from rational principles. Research on heuristics and
biases has characterized these deviations, but with many pos-
sible heuristics it can be di�cult to predict what people will
do in novel situations.

In this work we have o�ered a way to reconcile these two
perspectives—rationality and heuristics—by deriving optimal
heuristics from a rational analysis of how agents should allo-
cate limited cognitive resources. This approach of applying
rationality to cognitive processes themselves provides a general
framework for understanding decision-making that can also
make task-specific predictions. Drawing on ideas from artifi-
cial intelligence and machine learning, we were able to both
rediscover existing heuristics and identify new heuristics that
had previously been overlooked. Furthermore, we collected
a dataset of unprecedented scale to test our method across
a very broad range of decision environments, demonstrating
both the generalizability and accuracy of our approach. Our
results show that people follow all of the same heuristics as
our method, and adaptively select which heuristic to use in a
way that is consistent with our framework, but that there is
still room to improve on human decision-making.

One of the key ideas behind our approach is that we can
formulate the problem of discovering heuristics and predicting
when they should be used as a meta-level Markov Decision
Process (22, 40). The meta-level MDP framework allows
us to identify those heuristics that optimally trade-o� the
costs associated with acquiring information to update one’s
beliefs about the world with the benefits of that information.
This results in a normative view of heuristics, providing a
reconciliation between these historically divergent views of
decision-making. While information gathering has previously
been studied from a resource-rational perspective (63), the

§The SI also presents results that exclude participants who gamble randomly on more than half of
all trials.
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meta-MDP framework provides a new set of computational
tools for understanding heuristics through this lens. The
result is that we are able to formally identify heuristics that
achieve an optimal trade-o� between computational costs and
decision quality. Being able to derive heuristics directly from
a normative model forms a direct contrast to the cumbersome
and inexact process of searching for heuristics by hand that
psychologists have relied on in the past.

We demonstrated the usefulness of this approach using the
Mouselab task, which is a classic, well-studied process tracing
paradigm (64). While the Mouselab task has been widely used
to study decision strategies, these studies are typically limited
to around 20≠40 participants (e.g. (35, 60, 62, 65–68)), rarely
exceed 100 (69–71), and the largest study that the authors are
aware of collected 255 participants in a 2 ◊ 2 between-subjects
design, which examined the interaction between negative af-
fect and choice di�culty on decision strategies (72). In the
present study we searched for heuristics across a broad space
of decision environments and tested whether strategies change
across the parameters of those environments. This necessi-
tated a large-scale experiment using the Mouselab task. Future
work may apply our meta-MDP framework to potentially any
kind of decision-making process, providing a general-purpose,
normative approach for understanding how people think and
derive strategies for making decisions.

In the present task, participants used the same four strate-
gies as the resource-rational model, and it is useful to consider
their source. It is typically assumed that people have a limited
toolkit of general-purpose heuristics that are adapted to real-
world environments (e.g., (73, 74)). More specifically, heuris-
tics are thought to develop slowly through evolution and/or
learning rather than being crafted on the fly at decision time.
One consequence of this is that, in addition to limitations in
cognitive resources and time, humans have a limited toolkit
of heuristics to deploy—those which they have previously
acquired through evolution and learning (75). That these
general-purpose heuristics turn out to be resource-rational
in our task highlights the e�ectiveness of these strategies,
and perhaps the usefulness of the Mouselab task in capturing
important characteristics of real-world risky choice.

In addition to o�ering a method for deriving optimal heuris-
tics, our approach provides a more realistic framework for
both evaluating and improving human decision-making. To
rigorously evaluate and improve decision-making, we should
understand the agent’s computational goal and how it goes
about solving it. The resource-rational analysis presented
here is an attempt to reverse-engineer this decision process by
comparing human behavior to the predictions of our resource-
rational model. In our experiment, people did indeed use the
same strategies as the resource-rational model. Furthermore,
the heuristic solutions arising from our framework are inher-
ently sensitive to the statistics of the decision environment—
including the stakes of possible reward, the dispersion of pos-
sible outcomes, and the cost of acquiring information—and
people adapted their strategies to the decision environment in
a manner largely consistent with resource-rationality. While
participants’ performance was consistent with rational use
of cognitive resources, they performed below the level of the
resource-rational model (Figures S12 and S13). This suggests
that human decision-making still has room for improvement.
Our method could be used to provide feedback and teach

people which heuristics to use and under what circumstances,
in a manner that accounts for their cognitive limitations, pro-
viding a computationally informed path to improving human
decision-making (76–79).

Why did people under-perform relative to the resource-
rational strategies? First, it is important to note that our
normative framework should not be mistaken for a descriptive
account. Rather, it provides a prescriptive account of how
people ought to behave in the Mouselab task. It is therefore
not surprising that participants earned less reward than the
resource-rational model. Nevertheless, it is worth considering
the specific sources for this gap, which are detailed in the SI
section Sources of under-performance. While these sources
of under-performance suggest specific ways that people could
improve their decision-making strategies, achieving perfect
resource-rationality may still be unattainable. In fact, given
that resource-rational decision-making is itself an intractable
problem (80), this is almost certainly the case. Importantly,
however, this does not undermine the value of the approach,
for many of the same reasons that traditional rational or
“computational level” analyses are useful (81, 82). Providing
a rational benchmark for resource-constrained agents reveals
both the strengths and weaknesses of human decision-making,
and suggests important directions for future research.

Our resource-rational framework both o�ers a normative
standard for evaluating heuristics and, importantly, rests on a
formalism that makes it generally applicable to any decision-
making process. Researchers have previously considered the
ideal observer perspective for rational decision-makers (83–85),
but such an approach was recognized as infeasible (86–89).
An alternative view is to emphasize the limitations of the
decision-maker and the fact that heuristics are computation-
ally cheaper (60, 64) and may achieve some trade-o� between
accuracy and e�ort (90, 91) or optimization under constraints
due to information costs (92, 93), although these perspec-
tives typically view heuristics as inferior to rational decisions
(94, 95). The discovery that simpler regression models may
outperform more complex ones (96–99), combined with obser-
vations that heuristics often work quite well in many real-world
decision environments (100–106)—the so-called “less-is-more”
e�ect—challenged the classical normative view of rationality.
This led to the idea of ecological rationality (64, 107, 108), and
attempts to account for the e�ectiveness of heuristics in terms
of the structure of the decision environment (27, 30–35), the
e�ectiveness of reducing model parameters to balance the bias-
variance trade-o� (36, 109) or when observations are limited
or noisy (110–113), and Bayesian inference with strong priors
(114). More recently, a resource-rational analysis of cognition
has been applied to view heuristics as making rational use
of limited computational resources (21, 38, 115, 116). The
formalism used here for our resource-rational approach, de-
fined by the meta-MDP, breaks down decision-making into an
arbitrary discrete set of cognitive operations, and then applies
reinforcement learning to this decision-making process itself.
This provides a general-purpose formalism for deriving optimal
heuristics that avoids the need to search an intractable com-
binatorial space of possible heuristics, as well as a normative
benchmark for evaluating heuristics.

The finding that participants use resource-rational heuris-
tics in an adaptive manner suggests that people have highly
e�ective mechanisms for discovering and selecting good heuris-
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tics. Understanding those mechanisms and how they emerge is
an important direction for future research. On the other hand,
the deviations from resource-rationality suggest that people
might experience additional costs and that their mechanisms
for discovering and applying heuristics are imperfect. Future
research should attempt to characterize these costs, investigate
how people discover heuristics, and develop interventions that
improve people’s capacity to discover and adaptively choose
between heuristics.

Materials and methods

Strategy discovery
We have developed an automatic method for discovering ratio-
nal decision strategies. We define rational decision strategies
as the solution to the problem of deciding how to decide. Given
certain assumptions about the decision-maker’s cognitive ar-
chitecture and the structure of the decision environment, we
can we formalize this problem as a meta-level Markov Decision
Process (MDP). To compute the resource-rational heuristic en-
tailed by this definition, we then apply the Bayesian meta-level
policy search algorithm (39) to approximate the optimal policy
for selecting the next decision operation given the decision-
maker’s current knowledge state.

Here, we applied this approach to the Mouselab paradigm
(25). The following paragraphs explain how we modelled the
problem of meta-decision-making in the Mouselab paradigm as
a meta-level MDP, how we solved this problem using BMPS,
and how we characterized the resulting solution in terms of
simple decision strategies.

Mouselab paradigm In our version of the Mouselab
paradigm, the alternatives are gambles and the attributes of
each gamble are its payo�s in the event of di�erent outcomes.
The Mouselab paradigm traces people’s decision process by
recording the order in which they inspect di�erent pieces of
information. Concretely, participants are presented with a
payo� matrix where the columns correspond to the alterna-
tives they are choosing between and the rows correspond to
di�erent outcomes. Each cell in the payo� matrix specifies how
much the alternative corresponding to its column would pay if
the event corresponding to its row was to occur. Critically, all
of the payo�s are initially occluded and the participant has
to click on a cell to reveal its entry. The probabilities of the
di�erent outcomes are known to the participant. Each click
comes at a cost, and participants are free to inspect as many
or as few cells as they would like.

Meta-level MDP model of multi-attribute risky
choice in the Mouselab paradigm Before defining our
meta-level MDP model, we briefly review generic Markov
Decision Processes (MDPs) (117). MDPs are the standard
formalism for modeling sequential decision problems, in which
an agent iteratively interacts with an environment in order to
maximize attained reward. An MDP is defined by a four-tuple,
Mobject = S, A, T , R, where S is a set of possible environment
states, A is a set of actions that an agent can take, T is a
transition function that gives the probability of moving from
state s œ S to state sÕ conditioned on taking action a œ A:
T (s, a, sÕ), and R is a reward function describing the reward

received for such a transition: R(s, a). A reinforcement learn-
ing agent’s objective is to learn a policy, fi, that maps states
onto actions so as to maximize total expected reward.

A meta-level MDP is a special case of an MDP that is used
to describe the sequential decision problem associated with
making a decision, through a process of performing computa-
tions that update the agent’s beliefs about the external world.
(The term “object-level MDP” unambiguously refers to a
generic MDP that is not a meta-level MDP (41)). A meta-level
MDP is defined by a four-tuple, Mmeta = B, C, Tmeta, rmeta.
Here, states are replaced by a set of beliefs, B, describing
what the agent may think; actions are replaced by a set of
computations, C, describing cognitive operations the agent
can perform; the meta-level transition function, Tmeta, de-
scribes how a computation, c, made with belief b leads to a
new belief, bÕ: Tmeta(b, c, bÕ); finally, rmeta encodes both the
costs of computation (assigning a negative reward for every
computation executed) and also the quality of the ultimate
decision (assigning the expected external reward attained for
the external action that is ultimately executed; see rmeta(b, ‹)
below).

In addition to making computations, at any time, t, the
meta-level agent can choose to terminate deliberation by tak-
ing action ‹, at which point the meta-level reward function,
rmeta, describes the reward the agent will receive for taking the
object-level action that has highest expected utility given the
current belief; thus rmeta(bt, ‹) = maxa Es≥bt [U(s, a)] where
U is the external utility function. The meta-level agent’s ob-
jective is to learn a meta-level policy, fimeta, that maximizes
the trade-o� between decision quality, rmeta(bt, ‹), and accu-
mulated computation costs, t · ⁄, where t is the number of
computations executed before termination and ⁄ is the cost
of each computation.

We model optimal heuristics for risky choice in the Mouse-
lab paradigm as solutions to the meta-level MDP MMouselab =
(B, C, Tmeta, rmeta). Concretely, we characterize the decision-
maker’s belief state at time t by a set indicating which payo�s
have already been observed and processed (O) and proba-
bility distributions (bt,1, · · · , bt,n) over the expected values
e1 = E[vO,g1 ], · · · en = E[vO,gn ] of the n available gambles
g1, · · · , gn, where vO,gi contains the values that have been
observed for gamble i œ 1 : n. Furthermore, we assume that
for each element vo,g of the payo� matrix V there is one com-
putation co,g that inspects the payo� vo,g and updates the
agent’s belief about the expected value of the inspected gamble
according to Bayesian inference. Since the entries of the payo�
matrix are drawn from the normal distribution N (v̄, ‡2

v), the
resulting posterior distributions are also Gaussian. Hence, the
decision-maker’s belief about the expected payo� of the gth

gamble is represented by

bt,g =
1

b(µ)
t,g

, b(‡
2)

t,g

2
, [1]

where b(µ)
t,g

and b(‡
2)

t,g
are the mean and the variance of the prob-

ability distribution on the expected value of gamble g given the
belief state bt. Given the set Ot = {(o(1), g(1)), · · · , (o(t), g(t))}
of the indices of the t observations made so far, the means
and variances characterizing the decision-maker’s beliefs are
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given by

b(µ)
t,g

=
ÿ

(o,g)œO

p(o) · vo,g +
ÿ

(o,g)/œO

p(o) · v̄ [2]

b(‡
2)

t,g
=

ÿ

(o,g)/œO

p(o)2
· ‡2

v. [3]

That is, the belief about each gamble’s value is a Gaussian
whose mean is the expected value of the gamble (with unob-
served payo�s replaced by the average) and whose variance is
the probability-weighted sum of the variance induced by each
unobserved payo�.

The meta-level transition function Tmeta(bt, co,g, bt+1) en-
codes the probability distribution on what the updated means
and variances will be given the observation of a payo� value
Vo,g sampled from N (v̄, ‡2

v), and is determined using Bayesian
inference integrating over the distribution of possible observed
payo� values. The meta-level reward for performing the com-
putation co,g œ C encodes that acquiring and processing an
additional piece of information is costly. We assume that
the cost of all such computations is a constant ⁄. The meta-
level reward for terminating deliberation and taking action
is rmeta(bt, ‹) = maxg b(µ)

t
(g), since the agent will choose the

action with the gamble with the highest expected value.
Using this formalism we can define resource-rational heuris-

tics hı as optimal meta-level policies that maximize the meta-
level reward for making a decision in an well-informed belief
state minus the cost of attaining it, that is

(4)
hı = arg max

fi(meta)
E

C
ÿ

t

r(meta)(bt, fi(meta)(bt))

D

= arg max
fi(meta)

E
5

max
g

b(µ)
T

(g) ≠ T · ⁄

6
,

where the random variable T is the time step in which the meta-
level policy terminates deliberation and ⁄ is the cost of a single
computation. Having redefined resource-rational heuristics
in this way now allows us to discover them by solving meta-
level MDPs. To be able to solve complex meta-level MDPs,
we recently developed the Bayesian meta-level policy search
algorithm (39).

Bayesian meta-level policy search Bayesian meta-level
policy search (BMPS) is a reinforcement learning algorithm
for solving meta-level MDPs that we recently developed to
address the computational challenges of strategy discovery
(39). BMPS rests on the idea that the value of computation
can be approximated by interpolating between the myopic
value of computation, the value of perfect information about
the gamble that the computation is reasoning about, and the
value of perfect information. Concretely, BMPS optimizes the
meta-level return of the meta-level policy

(5)fimeta(b) = arg max
c

w1 · VOC1(b, c) + w2

· VPIsub(b, c) + w3 · VPI(b) ≠ w4 · cost(c),

subject to the constraints that w1, · · · , w3 œ [0, 1], w1 + w2 +
w3 = 1, and w4 > 0.

BMPS determines the weights w1, · · · , w4 by maximizing
the expected meta-level return of the resulting meta-level
policy using Bayesian optimization.

Application of BMPS to the Mouselab paradigm To
compute optimal risky choice strategies we applied BMPS to
a meta-level MDP model of decision-making in the Mouselab
paradigm described above. To achieve this, we instantiated
the four features that BMPS uses to approximate the value of
computation as follows: First, the value of perfect information
is the expected improvement in decision quality if one knew
the exact values of every gambles, rather than deciding based
on the current belief state. Formally, it is

VPI(bt) = E
vú

g ≥bt

5
max

g

vú

g

6
≠ max

g

b(µ)
t,g

,

where the expectation over the true gamble values, vú

g , is taken
with respect to the current belief state, capturing the fact that
previous computation informs how valuable future computa-
tion will be (e.g., if one gamble is already almost certainly
better than the others, there is little value to computing more).

Second, the myopic value of information is the expected
improvement in decision quality if one executes one more
computation before making a decision. Formally, it is

VOI1(bt, c) = E
bt+1|bt

5
max

g

b(µ)
t+1,g

6
≠ max

g

b(µ)
t,g

.

The previous two features provide upper and lower bounds
on the true value of executing a computation, based on upper
and lower bounds on the amount of future computation that
could be executed. We can also consider the value of inter-
mediate amounts of computation; in particular, we use the
value of learning the exact value of just one gamble, the one
that the considered computation is reasoning about. This is
defined as the expected maximum of the true value of that
gamble and the current expected value of the best alternative
gamble. Formally,

VPIsub(bt, c) = E
vú

gc
|bt,gc

5
max

;
vú

gc , max
g ”=gc

b(µ)
t,g

<6
≠ max

g

b(µ)
t,g

,

[6]
where gc is the gamble that computation c is reasoning about
and vúgc is the (hypothetical) true value of that gamble. As
before the expectation is taken with respect to the current
belief about the value of the gamble, and we subtract the value
of deciding immediately.

Finally, the cost of computation feature was simply

cost(ct) = rmeta(b, ct) = ≠⁄.

We applied BMPS separately to each of the fifty meta-
level MDPs modelling the fifty types of decision environments
used in the experiment. For each environment, we ran 500
iterations of Bayesian optimization. In each iteration the
algorithm chooses a candidate weight vector, and estimates
the performance of the corresponding policy averaged across
10,000 simulated decisions. The algorithm then returns the
weight vector with highest expected performance. See (39) for
details of the BMPS optimization procedure.

To derive the optimal heuristics for each environment we
then characterized the click-behavior of the best-performing
meta-level policy that we found across all runs of BMPS.
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Clustering and definition of strategies To identify dis-
tinct strategies, we applied the Elkan k-means clustering al-
gorithm to the locations of clicks predicted by our resource-
rational model across trials, with an Euclidean distance metric
(118). The following steps were performed to reduce uninfor-
mative spatial variation across trials in the locations of clicks.
First, for each trial a 4 ◊ 6 indicator matrix of click locations
in the Mouselab grid was generated. Second, for each column,
the sum of outcome probabilities for every observed cell was
computed. Finally, we performed the following transformation
on the indicator matrix: rows (outcomes) were rearranged
from the most to least probable outcome, and columns (gam-
bles) were rearranged in descending order of the sum of the
probabilities of the outcomes observed in that column (this
transformation is illustrated in Figure 3A). This transformed
binary matrix from each trial was collapsed into a vector of
length 24 (representing click locations but not the temporal
sequence of clicks), which comprised a sample for k-means
clustering. Fisher’s Linear Discriminant Analysis (LDA) was
used to project the 24-dimensional click sequence vectors onto
a 2-dimensional space (119). For the resource-rational model,
we selected k = 4 clusters, because this identified unique types
of click patterns; k > 4 resulted in redundant patterns of click-
ing, which could be due to a limit in the number of strategies
people use, or a limitation of the clustering method. Simi-
larly, for human participants using k = 5 clusters produced
distinct click patterns whereas using k > 5 clusters resulted
in groups of redundant strategies. For visualization purposes,
the centroid of each cluster was reshaped into a 4 ◊ 6 matrix
(Figure 3C).

Based on the clustering solutions, we defined 5 distinct
strategies as follow: 1) SAT-TTB+ was defined as clicking
one or more cells from the most probable row, and one or
more cells from one or more additional rows, but never more
cells from a less probable row than from a more probable
row; 2) SAT-TTB was defined as selecting 1-5 cells from the
most probable row, and nothing else, with the final clicked
cell having the highest payo�; 3) TTB was operationalized as
selecting all 6 cells from the most probable row, and nothing
else, then selecting the gamble with the highest observed value;
4) WADD was operationalized as selecting nearly all cells;
specifically, the strategy was classified as WADD for a given
sequence of clicks if BMPS deemed that additional clicks would
yield negligibly small value (i.e., when the value of additional
clicks was less than $0.01; the average such threshold was 19.1
clicks); 5) A random strategy entailed zero clicks, and 6) other
strategies were those not consistent with any of the previous
five definitions.

Behavioral experiment
Participants We recruited 2,368 participants on Amazon
Mechanical Turk(1, 115 females, mean age 37.6 years, standard
deviation 16.4 years), and paid them $0.50 plus a performance-
dependent bonus of up to $10.38 (average bonus $3.25) for a
mean of 10.2 min of work (standard deviation 4.1 min).

Stimuli and procedure Following instructions and a com-
prehension check, participants performed a variation of the
Mouselab task (25). Each of the 20 trials began with a 4 ◊ 6
grid of occluded payo�s: six gambles to choose from (columns)
and four possible outcomes (rows). The occluded value in each

cell specified how much the gamble indicated by its column
would pay if the outcome indicated by its row occurred. The
outcome probabilities were described by the number of balls
of a given color in a bin of 100 balls, from which the outcome
would be drawn (see Figure 1). For each trial, participants
were free to inspect any number of cells before selecting a
gamble. Clicking on a cell revealed its payo� and participants
were charged a fixed cost per click, depending on the condition.
The value of each inspected cell remained visible onscreen for
the duration of the trial. When a gamble was chosen partici-
pants were informed about which outcome had occurred, the
resulting payo� of their chosen gamble, and their net earnings
(payo� minus click costs).

The experiment used a 2 ◊ 5 ◊ 5 between-subjects factorial
design with a total of fifty conditions. The parameters in each
condition were the same as those used for model simulations.
These parameters included 1) the stakes of the decision, with
lower variation in points for low stakes, and higher variation
in points for high stakes (points drawn from N (0, ‡2) where
‡ œ {75, 150}), 2) the dispersion of of outcome probabilities,
with one outcome being much more likely than others for low
dispersion, and all outcomes being roughly equally likely for
high dispersion (outcome probabilities drawn from Dirichlet(–·

1) where – œ {10≠1.0, 10≠0.5, 100.0, 100.5, 101.0
}), and 3) the

cost of collecting information, defined by the number of points
subtracting for each click (⁄ œ {0, 1, 2, 4, 8}). This created a
total of 2 ◊ 5 ◊ 5 = 50 conditions.

The instructions explained the task by walking the partici-
pant through the demonstration of a trial with step-by-step
explanations. These explanations covered the cost of clicking,
the way that their payo� was determined, the range of pay-
o�s, and how some outcomes were more likely than others.
Participants were given three practice trials, and after these in-
structions were given a quiz that assessed their understanding
of all critical information conveyed in the instructions. The
full experiment, including instructions, can be viewed here:
https://mouselab.herokuapp.com/. If a participant answered one
or more questions incorrectly they were required to re-read
the instructions and retake the quiz. If they failed the quiz
three times they were not allowed to participate in the main
task.
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Identification of resource-rational decision strategies
We took a data-driven approach to discovering heuristic click sequences by applying the k-means clustering algorithm to vectors
of click sequences. Here we show a 2-dimensional embedding of the clustering, for visualization purposes, for participants
(Figures S1 and S2) and the resource-rational model (Figures S3 and S4), with each point representing the click sequence vector
from a single trial, with the color of each point corresponding to its k-means cluster number (Figures S1 and S3) or strategy
classification (Figures S2 and S4).

Fig. S1. Click sequence vectors from participant trials projected onto the 2D LDA
transform, with labels corresponding to the k-means cluster number (as shown in
Figure 3A).

Fig. S2. Click sequence vectors from participant trials projected onto the 2D LDA
transform, with labels corresponding to the strategy definition.

Fig. S3. Click sequence vectors from model trials projected onto the 2D LDA
transform, with labels corresponding to the k-means cluster number.

Fig. S4. Click sequence vectors from model trials projected onto the 2D LDA transform,
with labels corresponding to the strategy definition.
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Fig. S5. Confusion matrix showing agreement between k-means cluster labels
and strategy definitions, for participant trials. Annotations show the percentage
of total trials accounted for by each strategy pair. Cohen’s Ÿ = 0.543, 95% CI
[0.537, 0.548]

Fig. S6. Confusion matrix showing agreement between k-means cluster labels and
strategy definitions, for resource-rational model trials. Annotations show the percentage
of total trials accounted for by each strategy pair. Cohen’s Ÿ = 0.649, 95% CI
[0.648, 0.649]
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Comparison of strategies across environments
We inspected how participants adapted their strategy use frequency to the structure of the environment. Figure 4 in the main
text shows the main e�ect of each of the three parameters of the environment (stakes, dispersion, and cost) on strategy use
frequency for the model and participants; The figures in this section show strategy use frequencies in all fifty environments
(with 2 levels of stakes ◊5 levels of dispersion ◊5 levels of cost). They illustrate overall qualitative correspondence between the
model and participants in adaptive application of strategies according to the statistics of the environment.

Fig. S7. Frequency of SAT-TTB+ (left panels) and SAT-TTB (right panels) across all fifty experimental conditions, for the model (top panels), participants (middle panels), and a
comparison between the model and participants (bottom panels). The decision environment in each condition is defined by three parameters: ‡ (variance in potential reward
received), –≠1 (homogeneity of the outcome distribution), and lambda (number of points deducted for each piece of information gathered). The results here accompany the
results shown in Figure 4 in the main text. SAT-TTB+ and SAT-TTB are two heuristics discovered using our resource-rational method.
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Fig. S8. TTB (left panels) and WADD (right panels) strategy use frequencies across all fifty conditions in the experiment, for the model (top panels), participants (middle
panels), and a comparison between the model and participants (bottom panels). TTB and WADD are two known heuristics that our resource-rational model rediscovered.
The decision environment in each condition is defined by three parameters: ‡ (variance in potential reward received), –≠1 (homogeneity of the outcome distribution), and
lambda (number of points deducted for each piece of information gathered). This figure corresponds to Figure 4 in the main text, which shows frequencies for each parameter,
collapsed across all others.
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Table S1. Statistical results accompanying Fig. 4.

Strategy frequency Independent variable significant post-hoc comparisons e�ect sizes (Cohen’s d)
SAT-TTB stakes n/a 0.11
SAT-TTB+ stakes n/a 0.087
TTB dispersion all pairs ≠0.089, 0.048, 0.083, 0.23
random dispersion all pairs ≠0.12, ≠0.051, ≠0.11, ≠0.037
SAT-TTB+ cost all pairs ≠0.019, ≠0.082, ≠0.076, ≠0.13
TTB cost all pairs 0.21, ≠0.047, ≠0.13, ≠0.063
SAT-TTB cost all pairs 0.27, 0.078, 0.16, 0.089

Summary of statistical results accompanying the analyses reported in the section Comparison of strategies across environments in the main
text, and shown in Figure 4. When applicable, post-hoc pairwise comparisons were conducted between all 10 levels of each independent
variable using the Benjamini-Hochberg False Discovery Rate procedure. This test was not applicable (n/a) when the independent variable
had only two levels. The e�ect sizes for these comparisons were calculated using Cohen’s d and are presented in ascending order of the
corresponding levels of the independent variable.
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Rational strategy selection explains variability in choice behavior
Having shown that human participants use the same heuristics as the resource-rational model, and adapt them to the
environment in much the same way as the model, we next tested theoretical predictions about how four di�erent behavioral
characteristics ought to vary with the structure of the environment. The first two are the amount of information gathered and
the relative frequency of alternative- versus attribute-based processing. Figure 5 in the main text displays the main e�ect of
each of the three parameters of the decision environment on each of these variables. Figure S9 displays these two variables
in all fifty environmental conditions. Figures S10 & S11 show the alternative-variance and attribute-variance. In all cases,
participants show a correspondence to the theoretical predictions of the model as to how these behavioral markers should
adapt to the environment. See the Rational strategy selection explains variability in choice behavior subsection in the Results
section of the main text for details on how these measurements were defined.

Table S2 summarizes statistical analyses accompanying those presented in the main text, corresponding to Figures 5, S4,
and S6. A two-sample t-test was used to calculate the e�ect of stakes on the dependent variables. One-way analyses of variance
were run to assess the e�ects of dispersion and cost. Post-hoc pairwise comparisons were conducted between all adjacent levels
of each independent variable using two-sample t-tests with the Tukey-HSD correction for multiple comparisons. The e�ect sizes
for these comparisons were calculated using Cohen’s d.

Fig. S9. Information-gathering (measured with clicks; left panels) and attribute- versus alternative-based processing (right panels) shown across all fifty conditions of the
experiment, for the model (top row), human participants (middle row), and a comparison between the model and participants (bottom row). The fifty conditions vary three
parameters for a 2x5x5 across-participant design: reward stakes (‡), uniformity of outcome probabilities (–≠1), and the cost per click (⁄). The results here accompany the
behavioral results shown in Figure 5 in the main text. Within each parameter value in Figure 5, results are averaged across all values of other parameters, whereas in this figure
the full results for each of the fifty conditions is shown. See the Rational strategy selection explains variability in choice behavior subsection in the Results section of the main
text for details on how alternative- versus attribute-based processing was measured.
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Fig. S10. Behavioral correspondence between participants and the resource-rational model. Attribute variance (top panels), and alternative variance (bottom panels) for the
resource-rational model and human participants vary across the three parameters of the experiment: ‡ (reward stakes), –≠1 (dispersion of outcome probabilities), and ⁄ (cost
per click). Error-bars show the SEM across participants.
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Fig. S11. Alternative and attribute variance for all fifty conditions in the experiment (all combinations of ‡, –≠1, and lambda), for the model (top panels), participants (middle
panels), and difference between the two (bottom panels). The results here accompany the behavioral results shown in Figure S10. Within each parameter value in Figure S10,
results are averaged across all values of other parameters, whereas in this figure the full results for each of the fifty conditions is shown.
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Table S2. Statistical results accompanying Figures 5, S4, & S6.

Dependent variable Independent variable main e�ect significant post-hoc comparisons e�ect sizes (Cohen’s d)

Information gathering stakes t(2366) = 2.61,
p = 0.009 n/a 0.11

Information gathering dispersion F (4, 2363) = ≠1.22,
p = 0.30 n/a , -0.064, -0.0012, 0.036, -0.11

Information gathering cost F (4, 2363) = 293.8,
p < 0.001

all pairs except
2&4, 4&8 1.00, 0.32, 0.25, 0.29

Processing pattern stakes t(2366) = 2.28,
p = 0.022 n/a 0.099

Processing pattern dispersion F (4, 2363) = ≠28.0,
p < 0.001

all pairs except
10≠0.5&10≠0.0, 100.5&101.0 -0.16, -0.20, -0.092, -0.23

Processing pattern cost F (4, 2363) = 31.4,
p<0.001 0&1, 0&2, 0&4, 0&8 -0.52, -0.048, 0.012, -0.12

Attribute variance stakes t(2196) = ≠3.89,
p<0.001 n/a -0.17

Attribute variance dispersion F (4, 2193) = 24.74,
p<0.001

all pairs except
10≠0.5&100.0, 100.0&100.5 0.18, 0.010, 0.11, 0.26

Attribute variance cost F (4, 2193) = 121,
p<0.001

all pairs except
2&4, 4&8 0.78, 0.20, 0.095, 0.19

Alternative variance stakes t(2196) = ≠2.92,
p=0.0034 n/a -0.12

Alternative variance dispersion F (4, 2193) = ≠8.43,
p<0.001

10≠1.0&100.5, 10≠1.0&101.0,
10≠0.5&100.5, 10≠0.5&101.0 0.023, -0.14, -0.13, -0.057

Alternative variance cost F (4, 2193) = 115.0,
p<0.001 all pairs 0.70, 0.24, 0.19, 0.26

Relative performance stakes t(2366) = 1.69,
p=0.092, one-tailed n/a 0.069

Relative performance dispersion F (4, 2363) = ≠6.56,
p<0.001

10≠1.0&101.0, 10≠1.0&100.5, 10≠0.5&100.5,
100.0&101.0, 100.0&100.5 -0.075, 0.051, -0.28, -0.083

Relative performance cost F (4, 2363) = 21.0,
p<0.001

all pairs except
1&2, 2&4, 4&8 0.10, 0.11, 0.033, 0.10

Summary of statistical results corresponding to the analyses shown in Figures. 5 & S1. A two-sample t-test was used to test the main
e�ect of stakes on the dependent variables. ANOVAs were used to assess the main e�ects of dispersion and cost. When applicable,
post-hoc pairwise comparisons were conducted between all adjacent levels of each independent variable using two-sample t-tests with
the Tukey-HSD correction for multiple comparisons. These tests were not applicable (n/a) when the independent variable had only two
levels or its main e�ect was not significant. The e�ect sizes for these comparisons were calculated using Cohen’s d and are presented in
ascending order of the corresponding levels of the independent variable.

Sources of under-performance
We assessed how close human performance comes to the upper bound established by the performance of our resource-rational
model. We measured people’s relative performance by the fraction of the highest expected reward attainable with perfect
information, and omitting the cost of information gathering. Following the predictions of our resource-rational model,
participants’ relative performance tended to increase with increasing stakes (standardized — = 0.00023, p = 0.092) and
with increasing dispersion of the outcome distribution (— = 0.0048, p < 0.001), and decrease with increasing click costs
(— = ≠0.010, p < 0.001; Figure S12).

To evaluate the degree to which participants’ decision strategies are resource-rational, we measured the performance of
participants versus resource-rational decision-making. This analysis revealed that, on average, the relative performance of our
participants’ decision strategies was 60.9% of the relative performance of resource-rational decision-making (and 71.2% when
excluding participants who gamble randomly on more than half of all trials). There are at least four possible reasons why
people might be suboptimal: implicit costs of information gathering, suboptimal use of the gathered information, suboptimal
strategy selection, and suboptimal strategy execution. We now assess the degree to which each of these contributes to people’s
under-performance in turn.

To assess the degree to which insu�cient information gathering led to participants’ suboptimal performance, we ran 1,000
simulations of our method on each of the same exact trials presented to human participants, and measured relative performance
(defined as the fraction of the highest possible reward attainable with perfect information, and omitting the cost of information
gathering). To control for the overall amount of information gathered between our method and participants, we fit an implicit
cost of information gathering to the model using a grid search and found that an implicit cost of 2.1 points per click led to the
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same amount of information gathering on average as participants. We then measured the relative performance of the model
with an implicit cost of clicking of 2.1. This procedure was repeated when omitting participants who gambled randomly on
more than half of trials, resulting in an implicit cost of clicking of 1.3 points per click.

We then compared human performance to the performance of the resource-rational agent with an additional implicit cost
for each cell revealed, set such that the agent gathered on average the same amount of information as people. Such an implicit
cost might capture, for example, the physical e�ort and time required for humans to click (see Materials and Methods, and
Discussion sections). When the implicit cost was 2.1 points per click our model gathered the same amount of information as
participants on average, yet this resulted in only a 9.0% decrease in the model’s relative performance, accounting for 23.0%
of the overall di�erence in the relative performance between the perfectly resource-rational model and participants (see the
dashed teal lines in Figure S12; see Figure S14 for a comparison of the relative performance of participants and the model with
and without an implicit cost, across all fifty experimental conditions).

To assess the degree to which suboptimal strategy selection and suboptimal strategy execution led to under-performance,
we calculated a confusion matrix of strategy selection for participants and the model, using the same simulations. Since the
method occasionally selects di�erent strategies for the same trial (depending on the location of the first click), for a given
trial, the strategy selected on each simulation was counted as 1/1,000th of a trial, to account for the full distribution of
strategy selections. This procedure was repeated for the model without (Figure S16) and with (Figure S18) an implicit cost.
For each cell in the confusion matrix, we calculated the percentage of the point di�erential between model and participants
accounted for by the corresponding trials (where the point di�erential was for suboptimal strategy selection and suboptimal
strategy execution only, that is, not including the point di�erential accounted for by implicit costs or suboptimal strategy
execution). These percentages are displayed as annotations in Figures S16 and S18. In Figures S17 and S19 we displayed the
same confusion matrices shown in Figures S16 and S18, respectively, but only including the four strategies deployed by the
model and participants, and normalizing the colormap for each row for visualization purposes, while displaying annotations for
the absolute point di�erential accounted for by each cell. To quantify the agreement in each confusion matrix, we calculated
Cohen’s kappa (? ).

To measure the extent to which people are suboptimal because they make imperfect use of the collected information, we
computed the subjective expected values of all alternatives according to the information revealed by the participant. We
found that participants chose the gamble with the highest subjective expected value 90.2% of the time, accounting for only a
4.2% reduction in participants’ relative performance (an average loss of 2.76 points per trial), or 6.8% of the overall di�erence
between model and participant relative performance.

To assess whether participants’ under-performance was due to suboptimal strategy selection and suboptimal strategy
execution, we constructed a confusion matrix of trial-wise strategy selection for the model and participants, separately for
the model without (Figures S16 and S17) and with (Figures S18 and S19) the implicit cost of clicking. We then summarized
overall agreement in strategy selection with Cohen’s Ÿ. Overall, the agreement between the strategies selected by our model
and participants on a trial-by-trial basis was significantly above chance (p < 0.001) but indicated rather low agreement for the
top four strategies (Ÿ = 0.16 without implicit cost, Ÿ = 0.11 with implicit cost). The annotations in Figure S16 show that,
when controlling for the implicit cost of clicking (and assuming perfect participant strategy execution to isolate the e�ect of
strategy selection), trials in which the model selects SAT-TTB+ and participants gamble randomly account for 34.7% of the
total contribution of suboptimal strategy selection to reduced relative performance, and other trials when the model selects
SAT-TTB+ or when participants gamble randomly account for another 58.1%.

To calculate the degree to which suboptimal strategy execution led to under-performance, we calculated how many points
were lost by not selecting the gamble with the highest expected value (conditioned on the information gathered).

Suboptimal strategy selection—when participants choose a di�erent strategy than the model on a given trial—accounts for
63.0% of under-performance, while suboptimal strategy execution—when participants use the optimal strategy on a given
trial but do not gather information from the best locations—accounts for the remaining 7.2% of the performance gap between
people and the model.

Table S3 summarizes the contributions of each of these four sources of under-performance to absolute and proportional loss
in relative performance. It also presents the contribution of these sources of under-performance when excluding participants
who gambled randomly on more than half of all trials (394 participants, or 16.6% of all participants). With this exclusion
criterion (corresponding to Figure S13), the absolute contribution of suboptimal information gathering to performance is cut
roughly in half, and the implicit cost of clicking is reduced from 2.1 to 1.3 points per click. The absolute contribution of
suboptimal strategy selection is reduced by a quarter, and still accounts for the majority of overall under-performance.

Overall, these results suggests that while people use resource-rational decision strategies and adapt them to the environment
in a similar way as the resource-rational model, they often do not use the optimal strategy on a trial-by-trial basis.

Consistent with the idea that people first choose a decision strategy and then execute it, we found that participants deliberated
longer before the first click (2.92 sec) than before subsequent clicks (0.81 sec, t(2549) = 128.5, p < 0.001). Deliberation time
also predicted information gathering, such that longer deliberation was followed by more frugal strategies (0.62 fewer clicks for
each second spent deliberating; — = ≠0.62, t(38737) = ≠37.6, p < 0.001).
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Fig. S12. Participants show a qualitative correspondence in relative performance across conditions. Performance was measured as the relative reward earned on each trial
(the fraction of the highest possible reward with perfect information, omitting click costs). The dashed lines show the relative performance of the model when it is charged an
additional 2.1 points per click. This represents an implicit cost of clicking not captured by our model, such that the model gathers the same amount of information on average
as participants. This implicit cost reduced the relative performance of the model by only 9.0%. See the Rational strategy selection explains variability in choice behavior
subsection in the Results section of the main text for more information. Error-bars show the SEM across participants.

Fig. S13. Same figure as above, but excluding participants who gambled randomly on over half of all trials (n = 394 of 2, 368 participants total). This led to a reduced implicit
cost of clicking of 1.3 points per click. See Table S3 for a comparison of sources of under-performance when either excluding these participants or not.
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Fig. S14. Relative performance (right panels) and relative performance for the model with an implicit cost of clicking (left panels) shown across all fifty conditions of the
experiment, for the model (top row), human participants (middle row), and the difference between the model and participants (bottom row). The fifty conditions vary three
parameters for a 2x5x5 across-participant design: ‡ (reward stakes), –≠1 (uniformity of outcome probabilities), and ⁄ (cost per click). The results here accompany the
behavioral results shown in Figure S12. Within each parameter value in Figure S12, results are averaged across all values of other parameters, whereas in this figure the full
results for each of the fifty conditions is shown.
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Fig. S15. Same as Figure S14, but excluding participants who gambled randomly on more than half of all trials (n = 394 of 2,368 participants total).
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Fig. S16. Confusion matrix showing the number of trials in agreement in strategy
selection between the model and human participants. Annotations show the percent-
age of the total difference in relative performance between the model and participants
accounted for by each strategy pair (assuming perfect participant strategy execution).
Cohen’s Ÿ = 0.087, 95% CI [0.082, 0.091]

Fig. S17. Confusion matrix showing the portion of trials in agreement in strategy
selection between the model and human participants, normalized by model strategy
selection frequency (rows), showing the top four strategies. Annotations show the
average point difference between the model and participants for each strategy pair.
Cohen’s Ÿ = 0.16, 95% CI [0.15, 0.17]

Fig. S18. Confusion matrix showing the number of trials in agreement in strategy
selection between the model and human participants, where the model used the
same amount of information gathering on average as participants (with an implicit
cost of clicking of 2.1 points per click). Annotations show the percentage of the total
difference in relative performance between the model and participants accounted for
by each strategy pair (assuming perfect participant strategy execution). Controlling
the amount of information gathered for the model and participants, plus assuming
perfect strategy execution for participants, allows us to isolate the effect of strategy
selection on relative performance. Cohen’s Ÿ = 0.067, 95% CI [0.062, 0.072]

Fig. S19. Confusion matrix showing the portion of trials in agreement in strategy
selection between the model and human participants, normalized by model strategy
selection frequency (rows), showing the top four strategies. The model used the same
amount of information gathering on average as participants. Annotations show the
average difference between model and participant net points per trial, for each strategy
pair. Cohen’s Ÿ = 0.11, 95% CI [0.10, 0.12]
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Table S3. Contributions of three sources of participant under-performance

Source of under-performance Participant exclusion Absolute loss of relative performance Proportion of model-participant di�erence
in relative performance

Implicit costs No 0.080 23.0%
Suboptimal information use No 0.024 6.8%
Suboptimal strategy selection No 0.22 63.0%
Suboptimal strategy execution No 0.025 7.2%
Implicit costs Yes 0.039 15.2%
Suboptimal information use Yes 0.034 13.4%
Suboptimal strategy selection Yes 0.16 62.2%
Suboptimal strategy execution Yes 0.024 9.2%

Suboptimal strategy selection accounts for the majority of participant under-performance (see main text for details of these analyses).
Performance is defined using relative reward, as in Figures S12 and S13. Implicit costs of clicking account for a reduction of just 0.080
units of relative reward (the average di�erence between the dashed and solid teal lines in Figure S12), or 23.0% of the total di�erence
in relative performance between the model and participant (i.e. 23.0% of the average di�erence in the solid teal and solid blue lines in
Figure S12, 60.9%). Suboptimal use of information accounts for a reduction of a mere 0.024 units of reward in performance (the average
di�erence between the dashed and solid blue lines in Figure S12), or 6.8% of the 60.9% overall di�erence in performance between the
model and participants. Suboptimal strategy selection accounts for a reduction of 0.22 units of reward (the average di�erence between the
dashed teal and dashed blue lines in Figure S12), which is 63.0% of the overall di�erence in reward between the model and participants.
Suboptimal strategy execution accounts for the remaining 7.2% reduction in performance. The annotations in Figure S18 shows the
contribution of every pair of model-participant strategy types, averaged across trials, to the di�erence in performance between the model
and participants, controlling for the amount of information gathered. That is, the annotated percentages in Figure S18 (which add up
100%) are percentages of 70.2%, the contribution of suboptimal strategy selection and execution to overall under-performance. The
annotated percentages in Figure S16 (which also add up to 100%) do not control for the amount of information gathered between the
model and participants, and therefore account for suboptimal strategy selection and execution, and implicit costs (93.2% of the overall
di�erence in relative performance between the model and participants). When excluding participants who gamble randomly on more than
half of all trials (n = 394 of 2,368 participants total), then performance at the group level goes from 60.9% to 71.2% of the resource-rational
model, and the contribution to under-performance of suboptimal information gathering goes down (with the implicit cost of clicking
reducing from 2.1 to 1.3 points per click).
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