Header logo is


2017


no image
Optimal gamification can help people procrastinate less

Lieder, F., Griffiths, T. L.

Annual Meeting of the Society for Judgment and Decision Making, Annual Meeting of the Society for Judgment and Decision Making, November 2017 (conference)

Project Page [BibTex]

2017

Project Page [BibTex]


no image
Strategy selection as rational metareasoning

Lieder, F., Griffiths, T. L.

Psychological Review, 124, pages: 762-794, American Psychological Association, November 2017 (article)

Abstract
Many contemporary accounts of human reasoning assume that the mind is equipped with multiple heuristics that could be deployed to perform a given task. This raises the question of how the mind determines when to use which heuristic. To answer this question, we developed a rational model of strategy selection, based on the theory of rational metareasoning developed in the artificial intelligence literature. According to our model people learn to efficiently choose the strategy with the best cost–benefit tradeoff by learning a predictive model of each strategy’s performance. We found that our model can provide a unifying explanation for classic findings from domains ranging from decision-making to arithmetic by capturing the variability of people’s strategy choices, their dependence on task and context, and their development over time. Systematic model comparisons supported our theory, and 4 new experiments confirmed its distinctive predictions. Our findings suggest that people gradually learn to make increasingly more rational use of fallible heuristics. This perspective reconciles the 2 poles of the debate about human rationality by integrating heuristics and biases with learning and rationality. (APA PsycInfo Database Record (c) 2017 APA, all rights reserved)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


no image
Empirical Evidence for Resource-Rational Anchoring and Adjustment

Lieder, F., Griffiths, T. L., Huys, Q. J. M., Goodman, N. D.

Psychonomic Bulletin \& Review, 25, pages: 775-784, Springer, May 2017 (article)

Abstract
People’s estimates of numerical quantities are systematically biased towards their initial guess. This anchoring bias is usually interpreted as sign of human irrationality, but it has recently been suggested that the anchoring bias instead results from people’s rational use of their finite time and limited cognitive resources. If this were true, then adjustment should decrease with the relative cost of time. To test this hypothesis, we designed a new numerical estimation paradigm that controls people’s knowledge and varies the cost of time and error independently while allowing people to invest as much or as little time and effort into refining their estimate as they wish. Two experiments confirmed the prediction that adjustment decreases with time cost but increases with error cost regardless of whether the anchor was self-generated or provided. These results support the hypothesis that people rationally adapt their number of adjustments to achieve a near-optimal speed-accuracy tradeoff. This suggests that the anchoring bias might be a signature of the rational use of finite time and limited cognitive resources rather than a sign of human irrationality.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
An automatic method for discovering rational heuristics for risky choice

Lieder, F., Krueger, P. M., Griffiths, T. L.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society. Austin, TX: Cognitive Science Society, 2017, Falk Lieder and Paul M. Krueger contributed equally to this publication. (inproceedings)

Abstract
What is the optimal way to make a decision given that your time is limited and your cognitive resources are bounded? To answer this question, we formalized the bounded optimal decision process as the solution to a meta-level Markov decision process whose actions are costly computations. We approximated the optimal solution and evaluated its predictions against human choice behavior in the Mouselab paradigm, which is widely used to study decision strategies. Our computational method rediscovered well-known heuristic strategies and the conditions under which they are used, as well as novel heuristics. A Mouselab experiment confirmed our model’s main predictions. These findings are a proof-of-concept that optimal cognitive strategies can be automatically derived as the rational use of finite time and bounded cognitive resources.

Project Page [BibTex]

Project Page [BibTex]


no image
A reward shaping method for promoting metacognitive learning

Lieder, F., Krueger, P. M., Callaway, F., Griffiths, T. L.

In Proceedings of the Third Multidisciplinary Conference on Reinforcement Learning and Decision-Making, 2017 (inproceedings)

Project Page [BibTex]

Project Page [BibTex]


no image
A computerized training program for teaching people how to plan better

Lieder, F., Krueger, P. M., Callaway, F., Griffiths, T. L.

PsyArXiv, 2017 (article)

Project Page [BibTex]

Project Page [BibTex]


no image
When does bounded-optimal metareasoning favor few cognitive systems?

Milli, S., Lieder, F., Griffiths, T. L.

In AAAI Conference on Artificial Intelligence, 31, 2017 (inproceedings)

[BibTex]

[BibTex]


no image
The Structure of Goal Systems Predicts Human Performance

Bourgin, D., Lieder, F., Reichman, D., Talmon, N., Griffiths, T.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 2017 (inproceedings)

[BibTex]

[BibTex]


no image
Learning to (mis) allocate control: maltransfer can lead to self-control failure

Bustamante, L., Lieder, F., Musslick, S., Shenhav, A., Cohen, J.

In The 3rd Multidisciplinary Conference on Reinforcement Learning and Decision Making. Ann Arbor, Michigan, 2017 (inproceedings)

[BibTex]

[BibTex]


no image
Toward a rational and mechanistic account of mental effort

Shenhav, A., Musslick, S., Lieder, F., Kool, W., Griffiths, T., Cohen, J., Botvinick, M.

Annual Review of Neuroscience, 40, pages: 99-124, Annual Reviews, 2017 (article)

Project Page [BibTex]

Project Page [BibTex]


no image
Mouselab-MDP: A new paradigm for tracing how people plan

Callaway, F., Lieder, F., Krueger, P. M., Griffiths, T. L.

In The 3rd multidisciplinary conference on reinforcement learning and decision making, 2017 (inproceedings)

[BibTex]

[BibTex]


no image
Enhancing metacognitive reinforcement learning using reward structures and feedback

Krueger, P. M., Lieder, F., Griffiths, T. L.

In Proceedings of the 39th Annual Meeting of the Cognitive Science Society, 2017 (inproceedings)

Project Page Project Page [BibTex]

Project Page Project Page [BibTex]


no image
The anchoring bias reflects rational use of cognitive resources

Lieder, F., Griffiths, T. L., Huys, Q. J. M., Goodman, N. D.

Psychonomic Bulletin \& Review, 25, pages: 762-794, Springer, 2017 (article)

[BibTex]

[BibTex]


no image
Helping people choose subgoals with sparse pseudo rewards

Callaway, F., Lieder, F., Griffiths, T. L.

In Proceedings of the Third Multidisciplinary Conference on Reinforcement Learning and Decision Making, 2017 (inproceedings)

[BibTex]

[BibTex]

2013


no image
Controllability and Resource-Rational Planning

Lieder, F., Goodman, N. D., Huys, Q. J.

In Computational and Systems Neuroscience (Cosyne), pages: 112, 2013 (inproceedings)

Abstract
Learned helplessness experiments involving controllable vs. uncontrollable stressors have shown that the perceived ability to control events has profound consequences for decision making. Normative models of decision making, however, do not naturally incorporate knowledge about controllability, and previous approaches to incorporating it have led to solutions with biologically implausible computational demands [1,2]. Intuitively, controllability bounds the differential rewards for choosing one strategy over another, and therefore believing that the environment is uncontrollable should reduce one’s willingness to invest time and effort into choosing between options. Here, we offer a normative, resource-rational account of the role of controllability in trading mental effort for expected gain. In this view, the brain not only faces the task of solving Markov decision problems (MDPs), but it also has to optimally allocate its finite computational resources to solve them efficiently. This joint problem can itself be cast as a MDP [3], and its optimal solution respects computational constraints by design. We start with an analytic characterisation of the influence of controllability on the use of computational resources. We then replicate previous results on the effects of controllability on the differential value of exploration vs. exploitation, showing that these are also seen in a cognitively plausible regime of computational complexity. Third, we find that controllability makes computation valuable, so that it is worth investing more mental effort the higher the subjective controllability. Fourth, we show that in this model the perceived lack of control (helplessness) replicates empirical findings [4] whereby patients with major depressive disorder are less likely to repeat a choice that led to a reward, or to avoid a choice that led to a loss. Finally, the model makes empirically testable predictions about the relationship between reaction time and helplessness.

[BibTex]

2013

[BibTex]


no image
Learned helplessness and generalization

Lieder, F., Goodman, N. D., Huys, Q. J. M.

In 35th Annual Conference of the Cognitive Science Society, 2013 (inproceedings)

[BibTex]

[BibTex]


no image
Reverse-Engineering Resource-Efficient Algorithms

Lieder, F., Goodman, N. D., Griffiths, T. L.

In NIPS Workshop Resource-Efficient Machine Learning, 2013 (inproceedings)

[BibTex]

[BibTex]


no image
Modelling trial-by-trial changes in the mismatch negativity

Lieder, F., Daunizeau, J., Garrido, M. I., Friston, K. J., Stephan, K. E.

{PLoS} {C}omputational {B}iology, 9(2):e1002911, Public Library of Science, 2013 (article)

[BibTex]

[BibTex]


no image
A neurocomputational model of the mismatch negativity

Lieder, F., Stephan, K. E., Daunizeau, J., Garrido, M. I., Friston, K. J.

{PLoS Computational Biology}, 9(11):e1003288, Public Library of Science, 2013 (article)

[BibTex]

[BibTex]

2012


no image
Burn-in, bias, and the rationality of anchoring

Lieder, F., Griffiths, T. L., Goodman, N. D.

Advances in Neural Information Processing Systems 25, pages: 2699-2707, 2012 (article)

Abstract
Bayesian inference provides a unifying framework for addressing problems in machine learning, artificial intelligence, and robotics, as well as the problems facing the human mind. Unfortunately, exact Bayesian inference is intractable in all but the simplest models. Therefore minds and machines have to approximate Bayesian inference. Approximate inference algorithms can achieve a wide range of time-accuracy tradeoffs, but what is the optimal tradeoff? We investigate time-accuracy tradeoffs using the Metropolis-Hastings algorithm as a metaphor for the mind's inference algorithm(s). We find that reasonably accurate decisions are possible long before the Markov chain has converged to the posterior distribution, i.e. during the period known as burn-in. Therefore the strategy that is optimal subject to the mind's bounded processing speed and opportunity costs may perform so few iterations that the resulting samples are biased towards the initial value. The resulting cognitive process model provides a rational basis for the anchoring-and-adjustment heuristic. The model's quantitative predictions are tested against published data on anchoring in numerical estimation tasks. Our theoretical and empirical results suggest that the anchoring bias is consistent with approximate Bayesian inference.

link (url) [BibTex]

2012

link (url) [BibTex]

2006


no image
Die Effektivität von schriftlichen und graphischen Warnhinweisen auf Zigarettenschachteln

Petersen, L., Lieder, F.

Zeitschrift für Sozialpsychologie, 37(4):245-258, Verlag Hans Huber, 2006 (article)

Abstract
In der vorliegenden Studie wurde die Effektivität von furchterregenden Warnhinweisen bei jugendlichen Rauchern und Raucherinnen analysiert. 336 Raucher/-innen (Durchschnittsalter: 15 Jahre) wurden schriftliche oder graphische Warnhinweise auf Zigarettenpackungen präsentiert (Experimentalbedingungen; n = 96, n = 119), oder sie erhielten keine Warnhinweise (Kontrollbedingung; n = 94). Anschließend wurden die Modellfaktoren des revidierten Modells der Schutzmotivation (Arthur & Quester, 2004) erhoben. Die Ergebnisse stützen die Hypothese, dass die Faktoren «Schweregrad der Schädigung» und «Wahrscheinlichkeit der Schädigung» die Verhaltenswahrscheinlichkeit, weniger oder leichtere Zigaretten zu rauchen, vermittelt über den Mediator «Furcht» beeinflussen. Die Verhaltenswahrscheinlichkeit wurde dagegen nicht von den drei experimentellen Bedingungen beeinflusst. Auch konnten die Faktoren «Handlungswirksamkeitserwartungen» und «Selbstwirksamkeitserwartungen» nicht als Moderatoren des Zusammenhangs zwischen Furcht und Verhaltenswahrscheinlichkeit bestätigt werden.

DOI [BibTex]

2006

DOI [BibTex]